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Abstract. Two problems in control theory, one with state constraints and the other with 

control constraints, have been approximated by the finite element method. This discre- 

tization has been applied to both the primal and the dual formulation, in order to make 

a number of observations and comparisons: 

1. The rate of convergence as the grid interval h is decreased, for polynomial ele- 

ments of different degrees. 

2. The presence or absence of a boundary layer in the error, concentrated at the 

"contact points" where the constraints change between binding and nonbinding. 

3. The advantages of simpler constraints in the dual formulation, and the disadvan- 

tages of replacing strict convexity by ordinary convexity. 

4. The numerical efficiency of each possible variation in achieving an approximate 

solution of reasonable accuracy. 

We concluded that in our model problems, linear elements and the dual method 

provide the most efficient combination. 

1. Introduction. Apparently no one is sure of the best way to approximate a con- 
tinuous problem in quadratic programming. We decided to experiment with the finite 
element method, and to start with one-dimensional problems, even though this is not 
the setting in which finite elements have become famous. They are not regarded as op- 
timal for two-point boundary value problems, and very probably this is still true when 
there are inequality constraints, although these constraints so alter the problem that all 
the accepted opinions (including also the arguments favorable to finite elements) have 
to be reconsidered. 

We have chosen two special cases of the following quadratic problem in control 
theory: 

Minimize - J X(t) TQX(t) + u(t) TRu(t) dt 

subject to x(t) = Ax(t) + Bu(t), x(O) = xo, K,x(t) + b5 < 0, Kcu(t) + bc < O. 
We write h for the finite element grid interval, (xh, uh) for the "Ritz-Trefftz approxi- 
mation" to the dual problem, and (x*, u*) for the solution to the continuous problem. 
Hager has previously proved [1] that the errors uh - u* and xh - x*, measured in L2, 
are bounded by ch312 for piecewise polynomial spaces. And unless grid points are 
moved especially close to every "free boundary" where the constraint becomes binding 
(we shall call these contact points) this estimate is optimal [2]. 
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Using techniques similar to those in [1], the same error bounds can be proved for 

the primal problem when the control u is restricted to a subspace. On the other hand, 

for the case where A = Q = 0 and B = R = 1, Strang [3] notes a similar bound for the 

H1 error when the approximate state is required to be a piecewise polynomial. 

This paper examines the control error uh - u* in more detail. It is shown to ex- 
hibit a boundary layer, with most of the error concentrated at the contact points. This 

behavior occurred even if the approximating space possessed more continuity than the 

exact solution to the problem. The rate of decay of the error in the boundary layer de- 
pended on the ratio of diagonal to off-diagonal elements in the Hessian matrix corre- 

sponding to the cost function. When the state rather than the control was restricted to 

a subspace, the Hessian matrix lost diagonal dominance and the boundary layer faded 

away. 
Finally, we measured the efficiency of each algorithm by the number of multipli- 

cations required to reduce the error to a given magnitude. The dual method using 

piecewise linear elements proved to be the most practical. This method also enjoys an 
important programming advantage over the primal approach: the constraints are simpler. 

2. Problem Description. The following two problems were studied: 

Minimize f fO u(t)2 dt 

(S) subject to x(t) = u(t), x(O) = 0, 
x(t) > sin(7rt) + a, 
a =rrv3/12 - .5, 

Minimize l fJ u(t)2 dt 

subject to x(t) = u(t), x(O) = 0, 
(C) x(l)=b = 1/6 + /3r, 

u(t) > sin(Qt). 

The problem (S) has a state constraint, (C) has a control constraint, and u and x are 

real valued. 

The solution to (S) is given by us(t) = 6a + 3 for 0 S t S 1/6, u2(t) = ir cos(nt) 
for 1/6 < t S 1/2, and us(t) = 0 for t > 1/2. On [0, .5], this is identical to the solu- 

tion of the obstacle problem where x(l) also vanishes. Removing the constraint at the 

right end makes uS vanish after the peak of the obstacle at t = 1/2. The problem (C) is sim- 

ilar in structure to the variational formulation of a problem in plasticity theory in 

which a sphere is subjected to external pressure loading; u would represent the stress 
rate. The constant b was chosen so that the solution to (C) is uc(t) = 1/2 for 

0 S t S 1/6 or 5/6 < t S 1 and uc(t) = sin(7rt) for 1/6 S t ? 5/6. 
According to the theory developed in [4], the Lagrangian duals of (S) and (C) 

are: 
Maximize -%fJ v(t)2 dt + f (sin(rt) + a)dv, 
subject to v(l) = 0, v nondecreasing, 

Maximize fO [- ?(v(t) - q)2 + v(t)sin(rt)] dt - bq, 
(DC) subject to v(t) > 0, q unconstrained. 
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Piecewise Convergence Convergence Convergence 
Polynomials Rate in L2 Rate at t = 1/3 Rate at t = 0 

Constants 1.0 1 1.95 

Continuous 1.5 2 2.05 

Continuous 1.5 3 1.98 
Quadratic 

Continuous 1.5 . 4 1.98 
Cubic 

Cubic 15 4 1.98 
Hermite 

TABLE I. Convergence of u h - u* in Problem (DS) 

The variable q is a real number. One reason for studying these two problems was to 
analyze the effect of losing strict concavity in the cost functional; in general, the dual 
problem is only concave even though the primal problem is strictly convex. In our case 
(DS) is strictly concave and (DC) is only concave. The solutions are related to uS and 

uC, the solutions to (S) and (C) respectively, by v, = - uv vc - qc= uc, and qc = - 1/2. 
These relations also hold for the approximations uc, vc, qC, us , and vs generated by 
the Ritz-Trefftz method. 

The finite element approximation replaces a continuous problem by a discrete 
one; u or v is restricted to lie in a finite-dimensional subspace. The following subspaces 
were analyzed: piecewise constant functions, continuous piecewise linear, quadratic, and 
cubic polynomials, and the Hermite cubic polynomials-for which both function value 
and slope are continuous at the grid points. 

3. Convergence Results. In [11 it was observed that the L2 norm of the error 
h un - u depended on the distance between a contact point and the nearest grid point. 

In order to eliminate this dependence from the error, the grid points were always cho- 
sen so that the contact points occurred very near the center of a grid interval. 

Note that in problem (DS), vh is constrained to be nondecreasing. For piecewise 
constant and linear spaces, this constraint is easily maintained by the requirement 

vhI(tk) - Vh(tk+1) 6 0 and for piecewise quadratic functions, by the constraints 

3vh(tk) - 4vh(tk+12) + v(tk+1) ?0 and-vh(tk) + 4vh(tk+/2) - 3vh(tk+ 1) 0 for 
k an integer. For higher order spaces, however, the constraint bh > 0 imposes a nonlinear 
condition on the nodal parameters. Hence the computations could be simplified if the 
monotonicity requirement could be replaced by vh(tk) - Vh(tk+ 1 ) < 0 at the mesh 
points. A study of the structure of the necessary conditions for (DS) revealed that this 
replacement can be made without destroying the order of the convergence. 

An analogous result also held for the finite element approximations to the other 
problems analyzed herein. In each case, the continuous linear constraint leads to a non- 
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FIGURE 1. Problem (DS): Error at t = 1/3 as a Function of h 

Error 

.0006 

.0004- 

.0003- 

.0002- 

.0001 

0 5 10 15 20 25 

FIGURE 2. Pointwise Error for (DS) Using Hermite Cubics: h = 1/5i 

linear condition in the finite-dimensional problem. However, there is no loss in rate of 

convergence by replacing the nonlihear constraint with a linear restriction on the nodal 

parameters. In problem (S), above, the constraint ft ul'(s) ds > sin(7rt) + a is replaced 
by f;ku (s) ds > sinQrtk) + a for k = 0, . . ., N, where {tk} are evenly spaced on 

[0, 1 ] and the dimension of the subspace containing uh is N + 1. Similarly, the con- 

straint vh(t) > 0 in (DC) is replaced by v/'(tk) > 0; and in another formulation of (S) 

given below, the constraint x"(t) > (sin(7rt) + a) is replaced by xh(tk) > (sin(7rtk) + a). 

(a) The State Constrained Problem. The state constrained problem was first solved 
using the dual approach and the convergence results are given in Table I. 
It was observed that the convergence rate for uh(O) - vs(O) was 0(h2) for all the spaces 

except the piecewise constants. A plot of the convergence data for three of the spaces 
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FIGURE 3. Pointwise Error for (DS) Using Linear Elements: h 1/5i 

listed in Table I is given in Fig. 1. For the quadratic and the cubic spaces, the grid in- 
terval must be on the order of 1/300 before the pointwise error reaches the asymptotic 
range. Figures 2 and 3 plot the pointwise error in the finite element approximation 
using Hermite cubic and piecewise linear elements. Note that the Hermite cubics have 
a continuous derivative and the error in the approximation exhibits a boundary layer, 
with most of the error concentrated at the contact points t = 1/6 and t = 1/2 where 
the derivative of the exact solution is discontinuous. 

The L2 convergence rates given in Table I are exactly as expected, since [2] 
proved that the convergence estimates in the L2 norm were tight. The convergence 
rate for Is(O) - vs(0)I, on the other hand, can be rigorously proved by adding together 
the equalities in the Kuhn-Tucker conditions corresponding to the derivative with re- 
spect to the nodal variables on the interval [0, 1/6]. 

The interesting behavior in Table I and Figures 1, 2, and 3 is the convergence 
rate away from the boundary layer (at t = 1/3 for example). the reason for the decay 
in the error as we leave the contact points is that the diagonal elements in the Hessian 
matrix corresponding to the cost function in (DS) are much larger than the off-diagonal 
elements. This is illustrated for the piecewise linear space: Let dk = vh(tk) - vS(tk) 

where tk is the kth grid time. If e denotes the vector consisting of the components of 
d that correspond to grid points inside the interval [1/6, 1/2], then by a Taylor expan- 
sion, it can be shown that e satisfies 

(2) He = (O(h), 0(h2), O(h2) , 0(h2), 0(h))T, 
where H is a matrix with 2/3 along the main diagonal and 1/6 for its super- and sub- 
diagonal entries. 

Decompose the vector on the right side of (2) into three terms: O(h)p + O(h)q + 
O(h2)r where pT = (1, 0, 0, . .. , 0), qT = (0, 0, . . . , 0, 1), and rT = (0, 1, 1, . . .. 
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1, 0). Hence the solution to (2) is the sum of three terms: ep + eq + er. We shall 

compute 
(3) 11H-11 = max(llyll/llHyll) 

in the maximum norm, or 1., norm. Let llyll = 1, and Yk = 1 for some k. Since 

1y1I 1 for all j, we have 

1 2 1 >221-I <3 lHyI16> y, 1 ? Yk + Yk > I -= and 11H111?3 

Thus lIerII 0(h2) lIri 11 I = 0(h2). 
Now solve for the eq term by Gaussian elimination. As the sub-diagonal ele- 

ments in H are eliminated, the kth row converges to 

(4) .622 ek + .167 ek + 1= 0. 

If H is of order m, the last row is .622 em = 0(h). Solving by back-substitution, 

.268mm-k 
(5) leki I .269Iek+lI .621 0(h). 

Thus the contribution of ep + eq to the total error e decreases roughly by a factor of 

.268 on each grid interval as one moves away from the first and last component of e. 

The thickness of the boundary layer is approximated by the smallest k such that 

(.268)k/(.622) h. When 50 grid intervals are used and h = .02, then k - 3, which 

agrees with Fig. 3. 
A similar analysis holds for the other piecewise polynomial spaces. At each stage 

in the elimination of the lower triangular terms in H, we divide a row by a diagonal 

element and multiply by an off-diagonal element. For the piecewise linear space the 

ratio of diagonal to off-diagonal elements is .25, which agrees well with the decay of 

.268. A proof of this decay property for the solution of a diagonally dominant linear 

system can be found in the appendix. 
Next the problem (S) was rewritten, eliminating the control u and leaving an "ob- 

stacle problem" for the state x: 

(S') Minimize xO *(t)2 dt subject to x(0) = 0, x(t) > sin(rt) + a. 

The solution was exact at the grid points in the binding constraint region while the er- 

ror in slope on the interval [0, 1/6] was 0(h2) for all the subspaces studied: continuous 

piecewise linear, quadratic, cubic, and quintic spaces. Some of the convergence data is 

plotted in Figs. 4 and 5. Two questions arise: Why didn't the error exhibit a boundary 

layer, and why is the convergence second order even in piecewise linear spaces? The sec- 

ond order convergence resulted from a fortunate combination of circumstances; the con- 

straints are simple and the exact solution on [0, 1/6] lies in the piecewise linear subspace. 

By changing the cost functional slightly (for example, with a linear term as in (DS)), or by 

making the constraints a little more complicated (see below), the convergence in deriv- 

ative will only be 0(h) for piecewise linear spaces and at best 0(h312) for higher order 
spaces. 

The loss of the boundary layer resulted from the loss of diagonal dominance in 

the Hessian matrix corresponding to the cost functional. For example, the Hessian ma- 
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FIGURE 5. Piecewise Linear Approximation of (S) with h - 1/141 

trix corresponding to the piecewise linear subspace has 2's on the diagonal and - l's 
for sub- and super-diagonal elements. 

By choosing an appropriate subspace, however, the diagonal dominance can be re- 
stored. One possibility is to expand x or u, rather than x, in a piecewise polynomial 
subspace. The quadratic part of the cost function becomes exactly the same as for (DS), 
and the boundary layer reappears. Unfortunately, the constraint fO x(s) ds > sin rrt + a 
is no longer in band form, and the quadratic programming algorithm consumes much 
more time. The efficiency of all these methods for solving the state constrained prob- 
lem is discussed in Section 5. 

(b) The Control Constrained Problem. The convergence rates for problem (DC) 
using the finite element method are given in Table II, and the error using a piecewise 
linear subspace is plotted in Fig. 6. The primary difference between the convergence 
behavior for (DC) and (DS) is that the error is 0(h2) for all polynomial spaces beyond 
the piecewise constants on the interior [1/6, 5/6], where the control constraint is bind- 
ing, and the dual constraint is nonbinding. Recall that in (DS), the error was concen- 
trated in a boundary layer on the edges of this nonbinding region. As shown below, 
the reason for the slower convergence in (DC) away from the contact points is that the 
cost functional is only semidefinite instead of negative definite. 
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Piecewise Convergence Convergence Convergence 
Polynomials Rate in L2 Rate at t = 1/2 Rate at t = 0 

Constants 1.0 1.1 1.0 

Continuous 1.5 2.0 2.0 
Linear 

Continuous 1.5 2.0 2.0 
Quadratic 

TABLE II. Convergence Rate for u h - u* in Problem (DC) 
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FIGURE 6. Pointwise Error in (DC) with Linear Elements: h = 1/33 

Again consider the space of piecewise linear polynomials and let e be the vector 
consisting of components v,(t1) - v'(t1) corresponding to grid points inside the interval 
[1/6, 5/6]. Also define f = q, - qh. By a Taylor series expansion of v., the following 
relations hold: 

(6) He - gf= 0(h)p + 0(h)q + 0(h2)r, 

(7) hgTe - f = 0(h2), 

where H, p, q, and r were defined earlier and gT = (1, 1, . . , 1). Solving (6) for e 
and inserting the result into (7) yields: 

(8) (hgTH-lg - 1)f = 0(h2) + hgTH-l [O(h) p + 0(h)q + 0(h2)r]. 
It was shown above that IIH-1 11 < 3. Therefore, IgTH-lpl < lipllll IIH-lgll S 3 and 

IgTH-lrl < llg1ll1 IIH-1'rIl S< (1/h) IIH-1 II, 11r111 = 3/h; 

and the right side of (8) is 0(h2). By direct computation (or rigorously by a Gaussian 
elimination argument) it can be shown that hgTH-lg is bounded away from 1 and 
hence f = 0(h2) from (8). Thus by (6), 

(9) e = H-lgf+H-1[O(h)p + 0(h)q + 0(h2)r], 
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where IIH-1gII < 3, IIH-lrll < 3, and as shown above H-lp and H-lq yield an error 
term which decays by .269 over each grid interval as one moves toward the middle of 
the vector e. Hence these "middle components" of e are 0(h2). 

Now suppose that higher order polynomials are employed. The error on the right 
side of (7) is given by 

(10) f [V'(t) - vQ(t)] dt, 

where vl is the interpolate of VC in the piecewise quadratic subspace. Since 6,(l/6) and 

6,(5/6) are discontinuous, (10) is at best 0(h2) for all piecewise polynomial spaces un- 
less grid points are placed exactly at t = 1/6 and t =5/6. Thus f = q, - qh = 0(h2), 
and hence by (9), gf contributes 0(h2) to all components of e. The error then is 
0(h2) everywhere in the nonbinding region. 

4. Numerical Algorithm. These problems were solved by both gradient projection 
and conjugate gradient projection. From the numerical experiments, the conjugate gra- 
dient algorithm appeared to be very efficient both in determining the binding constraints 
and in solving the quadratic programming problem in the tangent plane corresponding 
to these constraints. 

In projecting the gradient or conjugate gradient onto the tangent plane corre- 
sponding to the binding constraints, our approach was to determine the projection ma- 
trix (-I + AT(AAT)y1A); A is the matrix consisting of the rows of binding constraints. 
Note that if the rows of A are taken in the natural order, AAT is a band matrix in 
problem (DS) and is the identity matrix in (DC) and (S'). Thus AAT can be stored in 
Cholesky's factored form LDLT. Also note that for the Hermite space, with r - 1 con- 
tinuous derivatives, we may group all rows of A which are identical after a translation 
and obtain at most r groups of rows. Thus AAT does not have to be determined by 
column-row multiplication, but a 2r x 2r table can be computed initially for the prod- 
ucts of rows in the r different groups; when an element of AAT is needed in the LDLT 
factorization routine, it is accessed by a simple "look up" procedure. 

Care should be taken not to introduce unnecessary constraints. For example, the 
space of Hermite cubics has dimension 2N + 1, with h = 1/N and vh(l) = 0. There- 
fore, no more than 2N + 1 monotone constraints of the form vh(tk) - vh(tk+ 1) S 0 

can be binding at one time without some subset of the constraints being dependent. 
And when some rows of A are dependent, the projection matrix is not given by the 
simple form above since AAT is no longer invertible. 

5. Conclusions. We want to compare the efficiency of the finite element proce- 
dures described above for the state constrained problem. Once the binding constraint 
set has been determined in the quadratic programming problem generated by the finite 
element method, the number of conjugate gradient iterations required to solve the qua- 
dratic programming problem in the tangent plane of the binding constraint set is essen- 
tially the number of variables in the quadratic program. Similarly, the cost of each it- 
eration can be estimated by counting the number of multiplications required. The 

"complexity" of a quadratic programming problem will mean the number of multiplica- 
tions required to solve the program once the binding constraint set is determined. Fig- 
ures 7, 8, and 9, respectively, plot the errors as a function of the logarithm of thle com- 
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plexity, as follows: Fig. 7 gives the L2 error in (DS), Fig. 8 the error at t = 1/3 (the 
farthest point from the contacts), and Fig. 9 the error at t = 1/6 in x using the finite 
element approximation of the control in (S), the state in (S'), and the dual variable in 

(DS). 
In terms of the L2 error, the piecewise linear space was the most efficient for all 

grid intervals. Recall that convergence in the L2 norm was first order for the piecewise 
constants and 0(h3/2) for higher order spaces. The increase to 3/2 with linear elements 
was worth the extra computation involved. 
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FIGURE 9. The Error in x at t = 1/6 for the State Constrained Problem 

In Fig. 8, recall that t = 1/3 is inside the boundary layer and the full convergence 
rate can be achieved. That rate continues to increase with the degree of the piecewise 
polynomials. On the other hand, the figure shows that when the desired accuracy is 
less than 10-4, the piecewise linear space is still the most efficient; only for very high 
accuracy will the higher degree spaces be superior. The reason lies in the slow approach 
of the convergence plots in Fig. 1 to the asymptotic range. 

Finally, it is seen in Fig. 9 that the piecewise linear elements and the dual ap- 
proach provide the most efficient estimate of XS at t = 1/6. Note, however, that the ef- 
ficiency plot for (S) appearing in Fig. 9 is based on the error at t = 1/6 and not the er- 
ror inside the boundary layer. Inside that layer, the efficiency of quadratic elements is 
very close to the efficiency of the linear elements in (DS). 

Appendix: Decay of the Solution to Diagonally Dominant Linear Systems. We 
now formally state and prove the decay property mentioned in Section 3 for the solu- 
tion of a diagonally dominant linear system. 

THEOREM. Suppose E is a matrix with E= for li-jl > A. Let jo E 
{1, 2, . .. , n}, let f be the vector with all entries zero except for entry jo which con- 
tains a one, and assume that E. - = 1 and 

IEi I/ IEiiI < r < 1 for all i. 

Then the solution to the linear system Ew = f satisfies Iw11 < rm + 1/(I - r) for all in- 
tegers m > - I and j such that Ij - jo I > mA. 

Proof. Defining N = D-1 (D - E) where D is the diagonal of E, the equation 
Ew = f can be rewritten in the form (I - N)w = D-lf = f where I is the identity ma- 
trix and the last equality follows since D. 01 = E1oio = 1 and f, = 0 for j 0 jo. Let 
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11-1 denote the lo norm and recall that the l,0 norm of a matrix is the maximum abso- 

lute row sum; then the diagonal dominance condition in the theorem's statement im- 

plies that IINII < r < 1. Thus 

00 oo m-1 00 

(I-N)-1 = Ei Nk and W = , Nkf= Z Nkf + , Nkf = tm + nm. 
k=O k=O k=O k=m 

Notice that 
00 00 

I(qM) 1 < ll1mii < Z | IINIlkIll ? E r' = rml(I -r). 
k=m k=m 

Furthermore (Qm) = 0 for Ij - jo1 > (m - 1)A since Nj= 0 for li - j I> A. Thus the 

bound on wi = (tm). + (am). in the theorem follows immediately. 
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